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One of the most common applications of mathematics is solving several equations for sev-
eral variables. In many cases, these equations are linear, where each variable is multiplied by
some number (we will be more precise later). This type of problem arises in a wide variety of
fields, including physics, engineering, chemistry, economics, logistics, biology, cryptography,
etc. (The text shows many interesting applications.) However, due to the compressed nature
of this course, we cannot take the time to explore particular applications. Instead, we focus
on the mathematical techniques for solving these and related problems.
Our basic tool for solving such a problem is just a formalized version of how you would

normally solve it by hand. In overview, the process has two main stages:

1. the forward, elimination stage, where at each step we use one equation to eliminate
one variable from the remaining equations, to simplify them

2. the backward, substitution stage, where at each step we solve the simplest resulting
equation for one variable and substitute that back into the other equations, again
simplifying them

The end result gives the solution.
This basic method is the single most important tool you will learn in this course. We

will apply it over and over, to a wide variety of problems, so it pays to master it right away.
In this module, we develop a formal, structured approach, that works with any number of
equations in any number of variables. We will find that the “bookkeeping” can be simplified
by representing all the equations as a single matrix, a rectangular array of numbers.

Mod1.1 Systems of Linear Equations

When you think of two or three variables, you might think of x and y, or x, y and z, as your
preferred notation. This gets less convenient as you consider more variables. Since we need
to handle any number of variables, we will use subscript notation, so for five variables we
might call them x1, x2, x3, x4, and x5. For some generic number n of variables, we would
abbreviate this list as x1, x2, . . . , xn.
A linear combination of variables is where we multiply each variable by a number and

add those products, for example 3x1− 4x2+ x4+47x5 (where x2 was multiplied by −4, and
x3 by 0). A linear equation is one that can be put in the form of a linear combination of the
variables on the left and a number on the right, for example 3x1 − 4x2 + x4 + 47x5 = 493.
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The general form of a linear equation in the n variables x1, x2, . . . , xn, where the numbers
multiplying each are a1, a2, . . . , an and the other number is b, is

a1x1 + a2x2 + . . .+ anxn = b

If an equation can be put in this form, it is linear; if not, we call it nonlinear. For example,
2x1+x2x3 = 4 cannot be put in that form due to the product x2x3; it is nonlinear. Similarly
x21 − 2x2 = 0 is nonlinear.
A collection of one or more linear equations in the same variables is called a system

of linear equations, or a linear system for short. A solution is an ordered list of numbers
(s1, s2, . . . , sn) that, when substituted for the corresponding variables, make all the equations
true simultaneously. We will see that a linear system might have only one solution, or it
might have more than one solution (infinitely many, if more than one). If a linear system has
no solutions at all, we call it inconsistent ; a system with one or more solutions is consistent.
If two different systems in the same variables both have the same set of solutions, we call

those systems equivalent. Our goal in solving a linear system is to find an equivalent system
that has the simplest possible form. As an example, the system

x1 − 2x2 = −1
x1 + x2 = 5

is equivalent to the (simplest) system

x1 = 3
x2 = 2

But note that neither of those is equivalent to the system

x1 − 2x2 = −1
−2x1 + 4x2 = 2

because, even though the solution (3, 2) satisfies this last system, so does (5, 3), so the
solution set is different. The first two systems only have one solution, (3, 2); the last has
many.
We can look at these systems graphically. Each linear equation in two variables represents

a line in the plane; each point on the line satisfies the equation. (Typically, to plot the line,
you find the intercepts, where the line crosses the axes, where one of the variables is zero.) A
system of two such equations represents two lines; the solution is where they intersect (the
point or points that satisfy both equations). The above three systems are plotted below. In
the third system, both equations describe the same line; every point on the line is a solution
to the system.
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What happens if we change one number on the right of the last system, to get

x1 − 2x2 = −1
−2x1 + 4x2 = 8

The resulting system is inconsistent; there are no solutions. So this system is not equivalent
to any of the above ones. Graphically, the two lines are parallel and never intersect, as shown
below:

system #4
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As we will see, the above possibilities are the rule; regardless of the number of variables,
every linear system has either:

1. no solutions (inconsistent), or

2. only one solution (unique), or

3. an infinite number of solutions.

Mod1.2 Solving Systems of Linear Equations

You may think that the goal of solving a linear system is to find what value each variable
must have. That’s correct for a system with a unique solution. But a better way to look
at it, which works for all three cases, is: the goal of solving a linear system is to find the
simplest possible equivalent system (like system 2 above).
We will use three elementary operations to simplify a system. The most useful one

is adding a multiple of one equation to another equation; the text calls this replacement
because we replace an equation by the new combination. Also, we can multiply an equation
by a nonzero number; this is called scaling the equation. Lastly, we can interchange (swap)
two equations, so we have the same equations in a new order. The text proves that these
operations yield equivalent systems, which should be no surprise.

Example 1

Here’s an example system:

x1 + 2x2 − 4x3 = −8
−x1 − x2 + x3 = 3
2x1 + 3x2 − 3x3 = −7

Let’s use the first equation to eliminate x1 from the other two, using the replacement
operation. (This is basically equivalent to solving the first equation for x1 and plugging that
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into the other two.) First, add row 1 to row 2 to cancel the x1’s:

( x1 + 2x2 − 4 x3 = −8 )
+ ( −x1 − x2 + x3 = 3 )
= ( 0 + x2 − 3 x3 = −5 )

This replaces equation 2, giving the equivalent system

x1 + 2x2 − 4x3 = −8
x2 − 3x3 = −5

2x1 + 3x2 − 3x3 = −7
Similarly, to cancel the 2x1 in the third equation, we can subtract twice the first:

(−2)× ( x1 + 2x2 − 4x3 = −8 )
+ ( 2 x1 + 3x2 − 3x3 = −7 )
= ( 0 + −x2 + 5x3 = 9 )

which replaces the third equation, giving

x1 + 2 x2 − 4 x3 = −8
x2 − 3 x3 = −5
−x2 + 5 x3 = 9

Now the last two equations only contain two variables, much simpler. Working with
them, we do the same sort of thing we just did: we use the second equation to eliminate x2
from the last, by adding it:

( x2 − 3x3 = −5 )
+ ( −x2 + 5x3 = 9 )
= ( 0 + 2x3 = 4 )

to replace the third row:
x1 + 2 x2 − 4x3 = −8

x2 − 3x3 = −5
2x3 = 4

This completes the forward elimination stage. We have eliminated as many variables as
possible from the last equation. We can see at a glance that we will be able to solve the last
equation for x3, substitute that back into the other two, then solve the middle equation for
x2 and substitute that into the first, which we can then solve for x1. (OK, maybe a long
glance.) Let’s do it!
We scale equation 3 by 1

2
(divide out the 2) to solve for x3, giving

x1 + 2 x2 − 4x3 = −8
x2 − 3x3 = −5

x3 = 2

Now we substitute it back to cancel x3 out of the other equations, using the replacement
operation. So we add 3 times equation 3 to equation 2:

3× ( x3 = 2 )
+ ( x2 − 3x3 = −5 )
= ( x2 + 0 = 1 )
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and add 4 times equation 3 to equation 1:

4× ( x3 = 2 )
+ ( x1 + 2 x2 − 4x3 = −8 )
= ( x1 + 2 x2 + 0 = 0 )

giving the simpler system
x1 + 2 x2 = 0

x2 = 1
x3 = 2

Finally, we substitute x2 from equation 2 back into the first, by

−2× ( x2 = 1 )
+ ( x1 + 2x2 = 0 )
= ( x1 + 0 = −2 )

giving the simplest system
x1 = −2

x2 = 1
x3 = 2

This completes the backward substitution stage, and there is the solution: (−2, 1, 2).

Mod1.3 Using Matrices to Streamline the Process

We went through the last example in full detail, to make sure all the steps are clear and
the reasons make sense. But now that we understand the process, we will streamline the
steps. Notice that for each step in the example, we lined up all the x1 terms in one column,
the x2’s in another . . . which helped in the bookkeeping. So instead of writing x1, x2 and
x3 every time, let’s just write each coefficient (the number multiplying the variable) in the
appropriate column. This saves a lot of writing; we just have to remember that the first
column corresponds to x1, etc.
So we write the coefficients as a rectangular array of numbers, called a matrix (plural:

matrices). It is standard to put big square brackets around the block of numbers, to signify
that this is a matrix. For our original system

x1 + 2x2 − 4x3 = −8
−x1 − x2 + x3 = 3
2x1 + 3x2 − 3x3 = −7

the coefficient matrix is  1 2 −4
−1 −1 1
2 3 −3


Each column gives the coefficients of a particular variable; each row gives the coefficients in
a particular equation.
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To keep track of the numbers on the right-hand side of each equation, we add another
column, and call the result the augmented matrix for the system: 1 2 −4 −8

−1 −1 1 3
2 3 −3 −7


Here, I put a vertical bar before the augmented column, which I will also call the data column.
This vertical bar reminds us where the equal sign goes in the equations; the bar separates
the left side from the right side of each equation. The text does not use this notation, but
I find it helpful at the beginning and at the end of the solution process, where we convert
between a system of equations and an augmented matrix.
We solve a system in matrix form using the same steps as with equations, but now each

equation corresponds to a row. So we call the three basic operations we applied to equations
the elementary row operations :

1. replacement : add a multiple of one row to another row

2. scaling : multiply a row by a nonzero number

3. interchange: swap two rows

Example 1, revisited

Let’s solve that same system again, using matrices. Our starting system: 1 2 −4 −8
−1 −1 1 3
2 3 −3 −7


For the forward elimination stage, we start with the first column, and use the top 1 to cancel
out the −1 and 2 below it (eliminate x1 from the other two equations). So we add row 1 to
row 2:

[ 1 2 −4 −8 ]
+ [ −1 −1 1 3 ]
= [ 0 1 −3 −5 ]

which replaces row 2, and we subtract twice row 1 from row 3:

(−2)× [ 1 2 −4 −8 ]
+ [ 2 3 −3 −7 ]
= [ 0 −1 5 9 ]

which replaces row 3. So now our new matrix, which is called row equivalent to the first
matrix, since it represents an equivalent system, looks like: 1 2 −4 −8

0 1 −3 −5
0 −1 5 9
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Next, ignoring the first row, we work on the second column, and use the 1 in the second row
to cancel out the −1 below it (eliminate x2 from the last equation), that is, add row 2 to
row 3:

[ 0 1 −3 −5 ]
+ [ 0 −1 5 9 ]
= [ 0 0 2 4 ]

to replace row 3, giving  1 2 −4 −8
0 1 −3 −5
0 0 2 4


With some practice, you can probably do these row replacement operations in your head.

We would summarize the steps so far by 1 2 −4 −8
−1 −1 1 3
2 3 −3 −7

 + row 1
− 2× row 1

∼
 1 2 −4 −8
0 1 −3 −5
0 −1 5 9


+ row 2

∼
 1 2 −4 −8
0 1 −3 −5
0 0 2 4


where the symbol ∼ means “is row equivalent to” (which is not the same as =).
At this point, we have finished the forward elimination stage, and we say the matrix is in

row echelon form. Now, proceeding with the backward substitution phase, we start at the
bottom row, scale the leading 2 (first nonzero in the row) into 1 (solve for x3), and use that
to cancel the −4 and −3 above (substitute x3 back into the first two equations): 1 2 −4 −8

0 1 −3 −5
0 0 2 4


×1
2

∼
 1 2 −4 −8
0 1 −3 −5
0 0 1 2

 + 4× row 3+ 3× row 3 ∼
 1 2 0 0
0 1 0 1
0 0 1 2


And finally, we use the leading 1 in the second row to cancel out the 2 above (substitute x2
back into the first equation): 1 2 0 0

0 1 0 1
0 0 1 2

 − 2× row 2 ∼
 1 0 0 −2
0 1 0 1
0 0 1 2


This completes the back substitution phase, and this matrix is the simplest row equivalent
form, called reduced row echelon form. Also, I put the vertical bar back in before the data
column, to remind us it represents the (simplest equivalent) system:

x1 = −2
x2 = 1

x3 = 2

Using matrices did not give us any new information, but it did eliminate a lot of writing,
especially if you use the summary-type notation and do the row operations in your head.
And it gave us a very structured approach, which works for any number of equations in any
number of variables.
On the next page, we give a summary of the solution method, in full generality. You may

want to print that page out for easy reference. It introduces some terminology and some
situations we have not seen yet, but will in the subsequent examples. If it seems confusing
at first, go on to the examples, to see how it works in practice.
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Mod1.4 Method Summary

Here is a summary of the standard method for solving a linear system.

1. Convert the system to an augmented matrix.

2. Start with the first (leftmost) column that is not all zeros. Choose a nonzero entry in
this column, and move it to the top (if it’s not already there) by a row swap. In this
position, the entry is called a pivot, and its position is called a pivot position.

3. Use the pivot, with row replacement operations, to zero out all the entries below it in
that column.

4. Now work on the submatrix consisting of all rows below the last pivot row; go back to
step 2 for the submatrix. Repeat until you run out of pivots.

Note: at this point, you have completed the forward elimination stage (called Gaussian elim-
ination), and the matrix is in row echelon form (or just echelon form):

(a) the leading entry (first nonzero) in any row is in a column to the left of the leading
entry in the row below;

(b) any rows of all zeros are below all nonzero rows.

In row echelon form, the leading entry of each row is called a pivot.

5. If there is a pivot in the data column, stop: the system is inconsistent. Otherwise,
continue.

6. Start with the lowest pivot. Scale the row to make the pivot = 1.

7. Use that pivot, with row replacement operations, to cancel out all the entries above it
in that column.

8. Now work on the submatrix consisting of all rows above the last pivot row; go back to
step 6 for the submatrix. Repeat until you run out of pivots.

Note: at this point, you have completed the backward substitution stage (the whole process
up to here is called Gauss-Jordan elimination), and the matrix is in reduced row
echelon form (or just reduced echelon form), which is row echelon form with additional
structure:

(c) the leading entry in each row is 1, and every other entry in that column is zero.

9. Convert this augmented matrix back to a system of equations.

10. Solve each equation for the first variable in it; these variables correspond to pivot
columns, and are called basic variables.

11. Any variables that are not basic variables (i.e., whose column has no pivot) are called
free variables ; for each free variable, write down that it is free.

12. That gives the general solution. If there are no free variables, the solution is unique.
If there are any free variables, then each of them can take on any value (they act as
parameters) and the number of solutions is infinite.
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Sometimes the arithmetic can be simplified using extra row operations, but always keep the
goals of row echelon form and reduced row echelon form in mind.
This is not the only possible method, but for the purposes of this course, it is the only

method we will use. To solve any linear system, we first find an equivalent row echelon form.
There are many different possible row echelon matrices for a given system, but they all have
the same pivot positions, which tell us how many solutions there are: if there is a pivot in the
data column, there are no solutions; otherwise, if there is a variable column with no pivots
(a free variable), there are an infinity of solutions; otherwise, there is a unique solution. To
get the solution(s), we find the equivalent reduced row echelon matrix; there is only one such
matrix for a given system.

Mod1.5 More Examples

Example 2

Let’s try another system of three equations in three variables (called a 3× 3 system):
x1 + 2 x2 + 3x3 = −1

−3 x1 − 6 x2 − 11x3 = 4
2 x1 + 4 x2 + 10x3 = −3

which corresponds to the augmented matrix: 1 2 3 −1
−3 −6 −11 4
2 4 10 −3


Now zero out column 1 below the pivot in row 1: 1 2 3 −1

−3 −6 −11 4
2 4 10 −3

 + 3× row 1
− 2× row 1

∼
 1 2 3 −1
0 0 −2 1
0 0 4 −1


Ignoring row 1, the first nonzero column in the submatrix is now column 3; use the pivot
−2 to zero out the 4 below: 1 2 3 −1

0 0 −2 1
0 0 4 −1


+ 2× row 2

∼
 1 2 3 −1
0 0 −2 1
0 0 0 1


Now, ignoring rows 1 and 2, the submatrix is just row 3 so there’s nothing to zero out below
it. We’re done with the forward stage, and the matrix is in echelon form.
Before continuing, we check where the pivots are: in columns 1, 3, and 4. But column 4

is the data column, and a pivot in the data column means the system is inconsistent. Why?
Let’s convert back to equations to see:

x1 + 2 x2 + 3x3 = −1
−2x3 = 1

0 = 1

There are no values of x1, x2, and x3 that make all three equations true simultaneously,
because the last equation is always false! So the original system is also inconsistent, and
we’re done (skip the backward stage).
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Example 3

Here’s another 3× 3 system:
4x2 − 4x3 = 0

x1 − 3x2 + x3 = 1
3x1 − 4x2 − 2x3 = 3

or

 0 4 −4 0
1 −3 1 1
3 −4 −2 3


Here, we can’t use the current row 1 to zero out the rest of the first column, so let’s swap
row 2 into that position first (we could have used row 3, but putting a 1 in the pivot position
is convenient for hand calculation): 0 4 −4 0

1 −3 1 1
3 −4 −2 3

swap w/2swap w/1 ∼
 1 −3 1 1
0 4 −4 0
3 −4 −2 3


− 3× row 1

∼
 1 −3 1 1
0 4 −4 0
0 5 −5 0


Now we ignore row 1, and just consider the last two rows. And for convenience, scale the
second row to get a leading 1 in the new pivot position, before zeroing out the 5 below it: 1 −3 1 1

0 4 −4 0
0 5 −5 0

×1
4 ∼

 1 −3 1 1
0 1 −1 0
0 5 −5 0


− 5× row 2

∼
 1 −3 1 1
0 1 −1 0
0 0 0 0


We’ve run out of pivots for the forward stage, and reached echelon form. We can see that

columns 1 and 2 are pivot columns. There is no pivot in the data column, so the system is
consistent. But there is also no pivot in column 3, so x3 is a free variable, and we will get
infinitely many solutions.
Now for the backward stage, our lowest pivot is in row 2, and it’s already a 1, so we only

need one more operation: 1 −3 1 1
0 1 −1 0
0 0 0 0

 + 3× row 2 ∼
 1 0 −2 1
0 1 −1 0
0 0 0 0


and have reached the reduced echelon form. Converting back:

x1 − 2 x3 = 1
x2 − x3 = 0

0 = 0

(the last equation is true but not informative) and solving gives the general solution:

x1 = 1 + 2x3

x2 = x3

x3 is free

The general solution shows the free variable x3 and how the other (basic) variables depend
on it, in all of the different possible solutions. If we choose x3 = 0, then x1 = 1 and x2 = 0,
so one solution is (1, 0, 0). We get another if we choose x3 = 2, then x1 = 5 and x2 = 2.
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Every choice of the free variable gives a different solution to the original system, so there are
an infinite number of solutions.
We can look at these three examples graphically. Each linear equation in three variables

represents a plane in three-dimensional space; each point on the plane satisfies the equation.
A system of three such equations represents three planes; the solution is where all three
intersect (the point or points that satisfy all three equations). Below is a plot of Example 1;
the three planes intersect in a single point. The second plot is the reduced echelon form of
the system.
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ex #1 reduced
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The plot of Example 2 is shown below, from two different viewpoints. Each pair of planes
intersects in a line, but those three lines are parallel. The three planes never all intersect,
and the system is inconsistent. The second view shows the planes “edge-on.”
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Example 3 is plotted below, again from two viewpoints. Here all three planes intersect in
the same line; every point on the line is a solution to the system. The second view shows one
of the planes “edge-on.” The third plot shows the reduced echelon form (only two planes).
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Example 4

This final example is a system of four equations in five variables (a 4× 5 system):
−2x1 + x2 − x3 + x4 − 3x5 = −1
4x1 − 2x2 + 2x3 − 5 x4 = −4
2x1 + x2 + 3x3 + 7 x4 − x5 = 15

x2 + x3 + 3 x4 − 4x5 = 5

with the augmented matrix: 
−2 1 −1 1 −3 −1
4 −2 2 −5 0 −4
2 1 3 7 −1 15
0 1 1 3 −4 5


First we zero out the first column below the pivot at the top:

−2 1 −1 1 −3 −1
4 −2 2 −5 0 −4
2 1 3 7 −1 15
0 1 1 3 −4 5

 + 2× row 1+ row 1
∼


−2 1 −1 1 −3 −1
0 0 0 −3 −6 −6
0 2 2 8 −4 14
0 1 1 3 −4 5


Now, ignoring row 1, the first nonzero column is the second. Let’s swap rows 2 and 4 to put
a 1 in the pivot position, and also use that 1 to eliminate the 2 in that column:

−2 1 −1 1 −3 −1
0 0 0 −3 −6 −6
0 2 2 8 −4 14
0 1 1 3 −4 5

swap w/4− 2× row 4
swap w/2

∼


−2 1 −1 1 −3 −1
0 1 1 3 −4 5
0 0 0 2 4 4
0 0 0 −3 −6 −6


Ignoring the first two rows, column 4 is the first nonzero column; use the pivot 2 to eliminate
the −3 below:

−2 1 −1 1 −3 −1
0 1 1 3 −4 5
0 0 0 2 4 4
0 0 0 −3 −6 −6


+ 3

2
× row 4

∼


−2 1 −1 1 −3 −1
0 1 1 3 −4 5
0 0 0 2 4 4
0 0 0 0 0 0


We’ve reached echelon form, and see the pivot columns are 1, 2, and 4. The data column

has no pivot, so the system is consistent, and we have free variables, so we will get an infinite
number of solutions.
Now for the backward stage, starting with the lowest pivot (in row 3), we scale it to 1

and zero out the column above it:
−2 1 −1 1 −3 −1
0 1 1 3 −4 5
0 0 0 2 4 4
0 0 0 0 0 0

×1
2

∼


−2 1 −1 1 −3 −1
0 1 1 3 −4 5
0 0 0 1 2 2
0 0 0 0 0 0


− row 3
− 3× row 3

∼


−2 1 −1 0 −5 −3
0 1 1 0 −10 −1
0 0 0 1 2 2
0 0 0 0 0 0
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Working upward, the next pivot is in column 2; we zero out the 1 above it, then scale the
pivot in row 1:

−2 1 −1 0 −5 −3
0 1 1 0 −10 −1
0 0 0 1 2 2
0 0 0 0 0 0


− row 2

∼


−2 0 −2 0 5 −2
0 1 1 0 −10 −1
0 0 0 1 2 2
0 0 0 0 0 0


× −1

2

∼


1 0 1 0 −5/2 1
0 1 1 0 −10 −1
0 0 0 1 2 2
0 0 0 0 0 0


Converting back to equations:

x1 + x3 − 5/2x5 = 1
x2 + x3 − 10x5 = −1

x4 + 2x5 = 2
0 = 0

and solving gives the general solution

x1 = 1− x3 + 5/2 x5
x2 = −1− x3 + 10 x5
x3 is free

x4 = 2− 2x5
x5 is free

The free variables x3 and x5 act as parameters, they can be anything, and determine the
values of the other variables. So again, we have an infinite number of solutions. (But to
visualize this we would need five dimensions for the five variables...)
Hopefully, the summary and examples have given you a firm handle on this method

for solving linear systems. We will refer to this method as the row reduction algorithm.
Mathematicians would call it Gauss-Jordan elimination (or Gaussian elimination if we stop
at echelon form).
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